Corrosion Protection

Corrosion is a natural process that converts a refined metal into a more chemically stable form such as oxide, hydroxide, or sulfide. It is the gradual destruction of materials (usually a metal) by chemical and/or electrochemical reaction with their environment. Corrosion engineering is the field dedicated to controlling and preventing corrosion.

In the most common use of the word, this means electrochemical oxidation of metal in reaction with an oxidant such as oxygen or sulfates. Rusting, the formation of iron oxides, is a well-known example of electrochemical corrosion. This type of damage typically produces oxide(s) or salt(s) of the original metal and results in a distinctive orange coloration. Corrosion can also occur in materials other than metals, such as ceramics or polymers, although in this context, the term “degradation” is more common. Corrosion degrades the useful properties of materials and structures including strength, appearance and permeability to liquids and gases.

Many structural alloys corrode merely from exposure to moisture in air, but the process can be strongly affected by exposure to certain substances. Corrosion can be concentrated locally to form a pit or crack, or it can extend across a wide area more or less uniformly corroding the surface. Because corrosion is a diffusion-controlled process, it occurs on exposed surfaces. As a result, methods to reduce the activity of the exposed surface, such as passivation and chromate conversion, can increase a material’s corrosion resistance. However, some corrosion mechanisms are less visible and less predictable.

The chemistry of corrosion is quite complex but it may be considered essentially as an electrochemical phenomenon. During corrosion at a particular spot on the surface of the object made of iron, oxidation takes place and that spot behaves as an anode. The electrons released at this anodic spot move through the metal and go to another spot on the metal and reduce oxygen at that spot in presence of H+ (which is believed to be available from H2CO3 formed due to dissolution of carbon dioxide from air into water in moist air condition of atmosphere. Hydrogen ion in water may also be available due to dissolution of other acidic ox ides from the atmosphere). This spot behaves as a cathode.

All rights reserved 2024. © Unified Connections Private Limited.